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Abstract. A number of normal state transport properties of cuprate superconductors are analyzed in
detail using the Boltzmann equation. The momentum dependence of the electronic structure and the
strong momentum anisotropy of the electronic scattering are included in a phenomenological way via
a multi-patch model. The Brillouin zone and the Fermi surface are divided in regions where scattering
between the electrons is strong and the Fermi velocity is low (hot patches) and in regions where the
scattering is weak and the Fermi velocity is large (cold patches). We present several motivations for this
phenomenology starting from various microscopic approaches. A solution of the Boltzmann equation in the
case of N patches is obtained and an expression for the distribution function away from equilibrium is given.
Within this framework, and limiting our analysis to the two patches case, the temperature dependence of
resistivity, thermoelectric power, Hall angle, magnetoresistance and thermal Hall conductivity are studied
in a systematic way analyzing the role of the patch geometry and the temperature dependence of the
scattering rates. In the case of Bi-based cuprates, using ARPES data for the electronic structure, and
assuming an inter-patch scattering between hot and cold states with a linear temperature dependence, a
reasonable agreement with the available experiments is obtained.

PACS. 72.10.Di Scattering by phonons, magnons, and other nonlocalized excitations – 74.25.Fy Transport
properties (electric and thermal conductivity, thermoelectric effects, etc.) – 71.10.Ay Fermi-liquid theory
and other phenomenological models

1 Introduction

The normal state transport properties of cuprate super-
conductors have attracted enormous attention. In the un-
derdoped regime a pseudogap appears in the excitation
spectrum of the metallic state above the superconduct-
ing critical temperature Tc and below a doping dependent
crossover temperature T ∗. At optimum doping the T ∗ al-
most coincides with Tc and the pseudogap region of the
phase diagram, if present, is very narrow. On the other
hand the metallic state of cuprates at optimum doping,
away from the pseudogap region, still strongly deviates
from what is observed in simple metals. At optimum dop-
ing the in-plane DC-resistivity is linear in temperature
from Tc to very high temperatures [1,2], the thermoelec-
tric power is linear [3], the cotangent of the Hall angle dis-
plays a T γ-dependence, (γ ' 2 in La-based and Y-based
cuprates [4,5], with deviations at low temperature of the
order of 2Tc, 1.60 ≤ γ ≤ 2 in Bi-based cuprates [6,7],
where increasing the doping decreases the exponent γ),
the magnetoresistance has approximately a T−α depen-
dence, with α ' 4 [7] and the thermal Hall conductivity
has approximately a T−β dependence, with β ' 1.2 [8].

a e-mail: perali@physics.rutgers.edu

Increasing the doping, in the overdoped regime, the con-
ventional Fermi liquid character of the metallic state is
almost recovered.

Theoretical approaches to the problem of transport
properties of cuprates can be classified in: (i) approaches
where in-plane transport properties are analyzed in terms
of two scattering times, one associated to the response
to an electric field (determining DC-conductivity) and
the other one associated to the response to a magnetic
field (determining Hall conductivity and magnetoresis-
tance) [10]; (ii) approaches based on the Boltzmann the-
ory [14], where the scattering time is momentum depen-
dent and the Fermi surface can be divided in hot re-
gions (around the M points of the Brillouin zone (BZ))
corresponding to strong scattering between quasiparticles
(short scattering time) and low Fermi velocity and cold
regions (around the nodal points located along the diago-
nals ΓY and ΓX of the BZ), corresponding to weak scat-
tering (large scattering time) and large Fermi velocity. In
the various models [11–13] proposed within the class (ii),
the temperature dependence of the scattering time in the
hot regions strongly deviates from the T 2 behavior of sim-
ple metals, while recovering this conventional behavior in
the cold regions. Hot/cold regions (or spots) models are
able to capture some anomalous properties of cuprates,
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but a general consensus and a systematic analysis of the
full set of electric and thermal transport properties is lack-
ing in the literature.

In this paper we study in a systematic way the nor-
mal state transport properties of cuprate superconduc-
tors within the second approach. We introduce a new pa-
rameterization of the scattering matrix in the Boltzmann
equation (BE) for the quasiparticle distribution function
via a multi-patch model, motivated by the strong momen-
tum dependence of the electronic properties observed in
the cuprates in angle resolved photoemission spectroscopy
(ARPES). The BE is solved in the case of N patches and
an expression for the perturbed quasiparticle distribution
function is obtained. Our analysis is then limited for sim-
plicity to the case of two patches, leaving the multi-patch
problem for future investigations. Within the two-patch
model the BZ and the Fermi surface (FS) are divided into
two regions, the hot regions corresponding to hot patches
on the FS and the cold regions corresponding to cold
patches on the FS [15]. Assuming a T 2 temperature de-
pendence for the scattering amplitude in the cold region,
a T dependence for the inter-patch (hot-cold) scattering
and a constant temperature dependence in the hot region,
a reasonable description of the available experimental data
for Bi-based cuprates is obtained.

ARPES experiments, mainly performed in Bi2212 com-
pounds, give a qualitative justification to the division of
the BZ and of the FS in cold and hot regions. ARPES
clearly shows that the line-shape of the spectral function
is strongly momentum dependent [17,18]. Around the M
points of the Brillouin zone (±π, 0); (0,±π) the spectral
function is very broad (the line-width is of the order of
0.2− 0.3 eV at T = 100 K [18]) and a quasiparticle peak
cannot be easily distinguished; the states around the M
points are therefore almost incoherent (as localized states)
and a very strong scattering mechanism is at the origin of
the broad line-shape. Moreover the electronic band dis-
persion has saddle points located at the M points and
this originates the van Hove singularity in the density of
states. The band dispersion along the MY direction is very
narrow (∆ε ≈ 50 meV for optimally doped Bi2212) and
the Fermi velocity is low [19]. These states correspond
therefore to hot states. The incoherent behavior and the
associated line-shape is also temperature independent in
the wide range of temperature between Tc and 300 K. On
the other hand, around the nodal points of the BZ lo-
cated along the ΓY (X) diagonals, the spectral function
has a well pronounced quasiparticle peak (the line-width
is of the order of 0.05− 0.1 eV at T = 100 K [18]) and the
wave-vector dispersion of this peak together with the tem-
perature dependence of the peak width can be followed.
Valla et al. found a linear temperature and frequency de-
pendence of the peak width for states around the nodal
points [20]. Moreover the band dispersion along ΓY (X)
is wide (∆ε ≈ 400 meV for optimally doped Bi2212) and
the Fermi velocity is high. The ratio of the Fermi veloc-
ities in the two regions is vF(ΓY )/vF(M) ' 3 [21]. The
quasiparticle states around the nodal points are therefore
coherent (delocalized states) and a scattering mechanism

with weaker intensity (even with unconventional nature)
is at the origin of the line-shape behavior. These states
correspond to cold states.

The physics of cuprates is very rich. Starting from the
low doping insulating phase, the holes added to the CuO2

planes of cuprates through out-of-plane doping will be-
come metallic and segments of a FS appear. The holes
move in an antiferromagnetic background and two holes
with opposite spins on the same lattice site experience a
strong Hubbard repulsion. The conducting holes are there-
fore strongly correlated and a possible description of the
electronic properties of the metallic state of cuprates has
been formulated in terms of the two dimensional Hub-
bard model, eventually with the inclusion of other terms
in the Hamiltonian (extended Hubbard model) to take
into account short range attraction due to phonons and/or
long range Coulomb interaction which can be relevant at
high doping. First insights in the phase diagram (temper-
ature vs. doping) of the (extended) Hubbard model in-
dicate the presence of several electronic instabilities aris-
ing from the competition between the different degrees of
freedom present in the Hamiltonian, such as the kinetic
term (delocalizing term) and the short range terms (local-
izing terms). The most relevant phases, toward which the
system is unstable, are the antiferromagnetic insulating
phase, phase separation in macroscopic regions with low
and high density of holes, spin and charge ordering in the
form of stripes, and finally superconductivity. The metallic
state of cuprates, in particular in the underdoped region of
the phase diagram, can be close to one of these electronic
instabilities. Therefore, the properties of the metallic state
of cuprates can be strongly connected to the presence of
several competing interactions which arise nearby the elec-
tronic instabilities mentioned above.

There are two possible microscopic origins for the mo-
mentum differentiation of the BZ, one connected to elec-
tronic scattering mediated by spin, charge or pair fluctu-
ations and another associated with proximity to a Mott
transition.

The first possibility for the momentum differentiation
of the BZ is based on its connection to electronic scat-
tering due to spin fluctuations [22]. Superconducting fluc-
tuations [11] and charge instabilities [23] have also been
involved. These fluctuations can mediate the electron-
electron interaction in both the particle-hole and particle-
particle channels and hence they can determine strong de-
viations in the properties of the metallic state, such as the
line-shape of the ARPES spectra and the shape of the FS
respect to a conventional Fermi liquid picture. The vari-
ous fluctuations have a specific momentum and frequency
dependence and the propagators are peaked at different
critical momenta qc, depending from the underlying insta-
bility: for phase separation qc = 0 [23], for antiferromag-
netic insulator qc = Q ≡ (π, π) [33], for charge ordering
qc = qstripe [34,35], where qstripe = 2π/λstripe (λstripe is
the periodicity of the charge modulation). Therefore, the
critical fluctuations couple electrons with momenta only
inside particular segments of FS, and the specific geometry
of the strongly coupled (and hence of the weakly coupled)
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segments is determined by the interplay between the shape
of the FS and qc. This leads to the phenomenology of the
two- or multi-patch model for the electronic scattering in
the metallic state of cuprates.

The second scenario for momentum differentiation
invokes the proximity to a Mott transition. It builds
on our recent understanding of this phenomena within
dynamical mean field theory (DMFT) [24] and its ex-
tension: the two impurity method [24,25], the Bethe-
Peierls cluster [24], the dynamical cluster approximation
(DCA) [26–28] and the cellular dynamical mean field the-
ory (C-DMFT) [29,30,36].

DMFT allows a microscopic description of the strongly
correlated state near the Mott transition. There is a tem-
perature scale reminiscent of the Kondo temperature TK,
such that for T � TK the quasiparticles are Fermi liq-
uid like, while for T > TK the single particle excitations
become incoherent and the transport properties are non
Fermi liquid like. In single site DMFT studies, the two
regimes were obtained by varying the temperature and
the strength of the local Hubbard repulsion U , and by
construction they occur uniformly in the BZ. Relaxing
the constraint of momentum independent selfenergy by
using the C-DMFT, one envisions that different patches
of BZ have different Kondo temperatures, leading natu-
rally to the multi-patch model presented here. According
to this view, therefore, the microscopic origin of the multi-
patch division of the BZ and of the FS of cuprate super-
conductors can be associated to the presence of a nearby
transition from a (non conventional) metallic state to a
Mott antiferromagnetic insulator. A detailed microscopic
derivation of the many-patch model is in progress, using
the C-DMFT.

These views on momentum space differentiation may
be complementary, and there are already strong hints from
numerical calculations by Onoda and Imada [37], that
they occur in the Hubbard model.

The plan of the paper is the following. In Section 2
we recall the BE in the linearized form and we introduce
the multi-patch model for the the scattering operator. The
scattering operator of the BE is projected on the patches
and temperature dependences of its coefficients are as-
signed. A set of smooth functions is introduced to per-
mit a continuous transition between hot and cold regions.
A solution of the BE in the case of N patches is given
in terms of the perturbed quasiparticle distribution func-
tion. In Section 3 the results for the normal state trans-
port properties obtained by the two-patch model are pre-
sented in a systematic way. The temperature dependences
of resistivity, thermoelectric power, cotangent of the Hall
angle, magnetoresistance and thermal Hall conductivity
are reported. The various transport properties are studied
for different set of parameters and the relevant hot/cold
patch is associated to every quantity. Our model is ap-
plied to the normal state transport properties of Bi-based
cuprates (Bi2212 and Bi2201) and, taking ARPES data
as input for the electronic structure, we find a reasonable
agreement with the available experimental data. Discus-
sions and conclusions are given in Section 4.

2 The Boltzmann equation
and the multi-patch model

ARPES experiments show that optimally and overdoped
cuprates have a large FS in the normal state and well de-
fined quasiparticles exist in a sizeable (cold) region of the
BZ around the ΓY (X) directions. The existence of a FS
and quasiparticles makes the treatment within the frame-
work of the BE possible. We start our analysis introducing
the linearized BE. As we are interested in electrical, heat
and Hall transport properties, we consider three terms
in the BE, the terms including the electric field E and
the temperature gradient ∇rT/T (driving terms) and the
term including the magnetic field B (bending term). We
consider here uniform electric and magnetic field. In this
case the linearized BE has the following form:

∂

∂t
gk +

(
−∂f

0
k

∂εk

)
εkvk ·

∇rT

T

+ eEvk

(
∂f0

k

∂εk

)
+

e

~c
[vk ×B] · ∂g̃k

∂k
= Ck (1)

where g̃k = gk + (−∂f0
k)/(∂εk)

∑
k′ fk,k′gk′ takes the in-

teraction between quasiparticles fk,k′ into account (Fermi
liquid corrections) [38] and gk is the departure from the
equilibrium distribution function f0

k. vk is the group ve-
locity of the quasiparticles. The scattering operatorCk has
the formCk =

∑
k′ [Ck,k′ g̃k′ − Ck,k′ g̃k], where Ck,k′ is the

scattering matrix, describing the scattering of quasiparti-
cles on an effective bosonic mode or impurity centers with
the first term describing scattering “in” to the state k and
the second term describing scattering “out” of the state k.
The relaxation time τk for the state k is defined as 1/τk ≡∑

k′ Ck,k′ . Within the conventional microscopic approach
to the transport properties of a Fermi liquid, the trans-
port equation for the distribution function can be written
in terms of the four-point vertex part Γ (k,k′,q, ω) [31].
The scattering matrix Ck,k′ is then identified with the
q = 0, ω = 0 limit of the irreducible part of the vertex
Ck,k′ =i(zkz′k/2)Γ (1)(k,k′,q = 0, ω = 0), where zk is the
quasiparticle residue and Γ (1) is the irreducible vertex. Be-
low we will use this identification to give a first microscopic
justification to our choice of Ck,k′ . In the steady-state case
we can replace g̃k → gk as every term in equation (1)
is expressed in terms of g̃k. Therefore the knowledge of
the form of fk,k′ is not required in the steady-state case.
Frequency-dependent transport processes require both g̃k

and gk, and hence the knowledge of fk,k′ becomes impor-
tant. In the steady-state case the number of quasiparticles
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allows us to write the l.h.s. of equation (2) in the form∑
k′ Âk,k′gk′ and hence the inverse of Âk,k′ is required

to solve equation (2). Considering weak magnetic fields,
the bending term containing the magnetic field in the BE
can be treated as a small perturbation of the transport
process. We split Âk,k′ in two parts, Âk,k′ = K̂k,k′ +
M̂B

k,k′, with a magnetic field independent part K̂k,k′ =
(1/τk)δk,k′ −Ck,k′ and a part that contains the magnetic
field M̂B

k,k′ = [(e/~c)(vk ×B) · ∇k] δk,k′. A perturbative
expansion of Âk,k′ in powers of B allows us to write the
inverse of this operator as

Â−1
k,k′ = K̂−1

k,k′ − K̂−1
k,kiM̂

B
ki,kjK̂

−1
kj,k′ (4)

+K̂−1
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−1
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with a summation over repeated indexes. Depending on
the quantity of interest, we get contribution from the dif-
ferent terms in this expansion. The first term gives the
leading order contribution to the DC and thermal conduc-
tivity, the second term to the (thermal) Hall-conductivity
and the third term to the magnetoresistance. It follows
from equation (2) that the number of particles gk con-
tributing to transport is given by

gk =
∑
k′
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[
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T
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0
k′
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)
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This equation is the starting point of our analysis. Elec-
trical and thermal conductivities are derived using gk ob-
tained from equation (5).

The transport properties are separable in electric and
thermal properties. All possible currents are given by(

je
jQ

)
=
(
σ̄ S̄
S̄ κ̄

)(
E
−∇TT

)
(6)

where je is the electric current, jQ is the thermal cur-
rent, σ̄ is the electrical conductivity tensor, κ̄ is the ther-
mal conductivity tensor and S̄ is the thermopower ten-
sor. Note that equation (6) contains a symmetric matrix
using ∇T/T as driving term for thermal gradients. The
currents defined in equation (6) can also be expressed in
terms of quasiparticles. The electric and the thermal cur-
rents are given by je = e

∑
k vkgk and jQ =

∑
k vkεkgk.

(When frequency dependence is considered, gk has to be
replaced with g̃k in the expression of the currents given
above.) The tensors defined in equation (6) are given by:
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with the inverse of the operator Âk,k′ given in equa-
tion (4). The factor 2 in the expressions above takes the
spin degeneracy into account.

The last unknown quantity in equation (2) is the scat-
tering matrix Ck,k′ . The scattering matrix is connected
via a frequency integration to the spectral function of the
effective bosonic mode exchanged in the electronic scatter-
ing. As discussed above, ARPES suggests that the bosonic
mode is strongly momentum dependent and divides the
BZ in hot and cold regions. In order to include in the scat-
tering matrix a non trivial momentum dependence and the
cold/hot division of the BZ, while maintaining a simple
solution of the BE, a possibility is to expand Ck,k′ with
respect to a basis of functions which are able to select the
various regions of the BZ, according to the momentum
dependence of the effective bosonic mode. Therefore, the
scattering matrix Ck,k′ can be written as

Ck,k′ =
N∑

i,j=1

aijΦi(k)Φj(k′), (10)

where Φi(k) is a function which is equal to one inside the
ith patch of the BZ and zero outside, and it interpolates
continuously between these two values; aij is the ampli-
tude of the scattering between the ith and the jth region of
the BZ, it is in general temperature dependent and ((aij))
is a symmetric matrix with real elements; N is the total
number of regions of the BZ required to include properly
the main effects of the anisotropy of the scattering and its
interplay with the shape of the FS.

One possible microscopic motivation for the form
of the scattering matrix given in equation (10) is
based on the connection between Ck,k′ and the four-
point vertex Γ discussed above equation (2) and on
the C-DMFT. The four-point vertex can in princi-
ple be evaluated by C-DMFT and the general struc-
ture of the irreducible vertex will be Γ (1)(k,k′,q, ω)
=
∑
α,β,γ,δ Γ

c
α,β,γ,δ(ω) φ†α(k) φβ(k′)φ†γ(k + q)φδ(k′ + q).

Once the patch function is defined as Φi=(α,β)(k) =
φ†α(k)φβ(k), equation (10) for Ck,k′ can be recovered.
The coefficient aij entering equation (10) are then de-
fined in terms of the four-point vertex of the cluster as
ai=(α,β),j=(γ,δ) =i(√zαzβzγzδ/2)Γ c

α,β,γ,δ(ω = 0).
The form of the scattering matrix given in equa-

tion (10) permits an analytical solution of the linearized
BE for gk defined above. Considering the electric field
and the thermal gradient as external perturbations, equa-
tion (2) gives

gk = τk

[
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(11)
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which reduces the solution of the BE to a matrix inversion
problem for the N2 elements of a matrix Tjl given by

Tjl = δjl −
N∑
m=1

amj
∑
k

Φm(k)τkΦl(k). (12)

From equations (11, 12) we can obtain the inverse of
the matrix K̂k,k′, defined above equation (4), as follow

K̂−1
k,k′ = τkδk,k′ + τkτk′

N∑
i,j=1

aijΦi(k)
N∑
l=1

T−1
jl Φl(k

′). (13)

Once we know the explicit expression for the opera-
tor K̂−1

k,k′, we are able to evaluate the expansion of the op-
erator Â−1

k,k′ for weak magnetic fields given in equation (4).
Inserting the operator Â−1

k,k′ in equation (5), we can eval-
uate the solution of the linearized BE, given by gk, in
the presence of an electric field, a thermal gradient and
a weak magnetic field. gk can be then used to evaluate
all the currents given above equation (7). All the response
functions given in equations (7–9) are obtained inserting
directly the expression for Â−1

k,k′ .
In the following we consider a minimal realization of

this multi-patch approximation limiting our analysis to
N = 2 patches. The two-patch model permits the distinc-
tion between cold and hot regions on the BZ and the FS
and it is suitable to describe the main properties of the
scattering between electrons and an effective mode peaked
at large momenta (e.g. an antiferromagnetic spin fluctua-
tion peaked at Q ≡ (π;π)). On the other hand, to include
the effect of the (small momenta) forward scattering, im-
portant for transport mainly in the cold region, a larger
number of patches is required (at least N = 5), and we
deserve this case for further investigation.

In the case N = 2, the two-patch division of the BZ
and of the Fermi surface is realized by introducing two
functions Φk and Ψk: Φk describes the cold region and Ψk

the hot region as indicated in Figure 1. The cold region is
described by four boundaries as shown in Figure 1. The
angle θ, defined with respect to the Y = (π, π) point of
the BZ, parameterizes the size of the hot regions (and
hence of the cold regions). The reason to split the whole
BZ (and not only the FS) into a cold and a hot part is
that the term ∂f0/∂ε in equation (2) doesn’t restrict the
sum over k on the FS any more when we increase size-
ably the temperature, studying T -dependent properties.
As the leading contribution to the magnetoresistance is
given by the third term in equation (4), which contains two
derivatives with respect to kx, ky (given by M̂B repeated
two times), the magnetoresistance diverges in the case of
a discontinuous change between the two patches. There-
fore we introduce functions Φk and Ψk varying smoothly
between the two regions. We use hyperbolic tangents to
describe the smooth change between the two regions and
a parameter w is introduced to describe the width of the
transition region. In the limit w → 0 a step function is
recovered, θ(x) = limw→0(1 + tanh(x/w))/2. Finally, we
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Fig. 1. The first quadrant of the BZ is splitted into cold and
hot regions. Cold regions are described by a function Φk and
hot regions by a function Ψk. The angle θ parameterizes the
size of the hot regions.

define two slopes, m1 and m2, and two offsets, t1 and t2,
given by m1 = cot(θ) > 0, m2 = tan(θ) > 0,m1 > m2,
t1 = π(1 − tan(θ)) > 0 and t2 = π(1 − cot(θ)) < 0. In
the case of smooth functions, the cold region in the first
quadrant of the BZ (see Fig. 1) is described by:

Φk =
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Φi(k) (14)
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2

[
tanh

(
ky −m1kx − t2

w

)
+ 1
]
.

The smooth change between the two patches is shown in
Figure 2. The hot region is described by Ψk = 1−Φk. Note
that Ψk vanishes only asymptotically in the cold region
and vice versa.

Following the phenomenological approach described
above, the scattering matrix can be written consisting of
different scattering mechanisms in different patches. In the
case of the two-patch model, we introduce three parame-
ters that describe the possible scattering, scattering inside
the cold or inside the hot region and scattering between
the two (hot/cold) regions,

Ck,k′ = aΦkΦk′ + bΨkΨk′ + c[ΦkΨk′ + ΨkΦk′ ]. (15)

The scattering matrix Ck,k′ given in equation (15) is writ-
ten as a sum of terms which have a separate dependence
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Fig. 2. Smooth change between the two patches. The param-
eter w describes the width of the transition region between the
two patches and it allows to study the effects of this region on
transport properties.

from k and k′. This approximation permits an analytic so-
lution of the BE for gk, while having a non trivial momen-
tum dependence and symmetry properties of the scatter-
ing process. With the symmetric scattering matrix given
in equation (15), we obtain a momentum dependent re-
laxation time τk, 1/τk ≡

∑
k′ Ck,k′ ,

τk =
1

CΦΦk + CΨΨk
(16)

with CΦ = αa+(1−α)c and CΨ = (1−α)b+αc, where, in
the limit w → 0, α describes the area of the cold region,
α =

∑
k Φk, and 1−α the area of the hot region, 1−α =∑

k Ψk. All the sums are normalized with respect to the
number of k-points of the BZ. In the limit w → 0 we get
two different lifetimes in the cold and in the hot regions:

lim
w→0

τk =

{
τc = 1

αa+(1−α)c in cold regions,
τh = 1

αc+(1−α)b in hot regions. (17)

We consider the following temperature dependences of the
scattering amplitudes in the scattering matrix:

a(T ) = āT 2; b(T ) = b̄; c(T ) = c̄T, (18)

with the temperature independent parameters ā, b̄ and c̄
having proper dimensions given by

[
~ā/k2

B

]
= 1/eV,[

~b̄
]

= eV and [~c̄/kB] = 1. Indeed, in the cold region
the scattering is weak and a Fermi liquid behavior with
a T 2 temperature dependence of the scattering matrix
Ck,k′ (with both k,k′ inside the cold region) is a rea-
sonable assumption. On the other hand, in the hot re-
gion the scattering is strong and, as suggested by ARPES,
the states are almost incoherent; we consider Ck,k′ (with
both k,k′ inside the hot region) as temperature indepen-
dent. Finally, we introduce a coupling between the hot and
cold regions. The inter-patches elements of Ck,k′ (with k
inside the cold region and k′ inside the hot region and
vice versa) are considered to be temperature dependent
with a linear in T dependence, and this is a key assump-
tion in our model to obtain the linear temperature depen-
dence of the resistivity, as shown in the next section. The
important consequence of our assumptions for Ck,k′ , and
in particular the introduction of the inter-patches scatter-
ing with a linear temperature dependence, is that at low

temperature the scattering amplitude is non-Fermi liquid
at any k-point of the BZ. Indeed in the cold region we
have 1/τc = αāT 2 + (1 − α)c̄T , while in the hot region
1/τh = (1 − α)b̄ + αc̄T . The Fermi liquid behavior can
be recovered in the cold region when the area of the hot
region tends to zero (i.e. α = 1). The non Fermi liquid be-
havior of the scattering amplitude in the cold region at low
temperature is supported by the ARPES experiments of
Valla et al. [20], as already discussed. The linear temper-
ature and frequency dependence of the scattering rate is
also obtained theoretically considering, e.g., an antiferro-
magnetic ansatz for the susceptibility of the carriers [32].

To solve the BE, it is necessary to find how the
operator K̂−1 acts on an arbitrary velocity, as can be
seen in equation (5). Because of the symmetry properties
of the scattering matrix Ck,k′ and of the quasiparti-
cle velocity vk, when summing over the whole BZ,∑

k′ Ck,k′vk′ = 0 [40]. Using these properties, we find
that K̂−1 acts on an arbitrary velocity just by inserting
a scattering time τk, that is momentum dependent, in
front of the velocity,

∑
k′ K̂

−1
k,k′v

ν
k′ = τkv

ν
k. This allows us

to solve exactly the linearized BE and to obtain formulas
for the several transport properties we are interested
in. The deviation gk from the equilibrium distribution
function f0

k is gk = eEτkvk · n̂(−∂f0
k/∂εk), where n̂

is the direction of the external electric field E = En̂.
The momentum dependence of gk is therefore given by
gk ∼ vk · n̂/(CΦΦk +CΨΨk) and hence in the hot regions
gk is strongly suppressed while in the cold regions gk has
sizeable values. Hlubina and Rice, solving the BE by a
variational approach in the case of hot spots generated
by antiferromagnetic fluctuations coupled to fermions,
obtained a gk with similar properties, i.e. a depopulation
of the hot regions [13] (see Sect. 4 for a discussion).
Finally, as regard the single particle electronic properties,
we recall that optimally and overdoped cuprates display
very similar shape and momentum dependence of the
Fermi surface and of the electronic band dispersion.
Therefore we consider Bi2212 as typical for the FS and
band structure of cuprates. For this material several
ARPES measurements are available. We consider a
tight-binding model for the band structure of Bi2212
with hopping up to the fifth nearest neighbors. We are
using the following fit for the energy of the quasiparticles
ε(k) obtained by Norman et al. [39].

ε(kx, ky) =
6∑
i=1

ciηi(kx, ky) (19)

with the values of the coefficients ci and the func-
tions ηi given by c1 = 0.1305 eV, c2 = −0.5951 eV,
c3 = 0.1636 eV, c4 = −0.0519 eV, c5 = −0.1117 eV,
c6 = 0.0510 eV and η1 = 1, η2 = 0.5[cos(kx) +
cos(ky)], η3 = cos(kx) cos(ky), η4 = 0.5[cos(2kx) +
cos(2ky)], η5 = 0.5[cos(2kx) cos(ky) + cos(2ky) cos(kx)],
η6 = cos(2kx) cos(2ky). These parameters are appropriate
for the band structure of Bi2212 compounds at optimum
doping, thus giving an open FS and a van Hove singularity
(VHS) slightly below the Fermi level. The value of εF =
−c1 = −0.1305 eV is fixed to have the proper distance
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of the Fermi level from the VHS (εF − εVHS = 35 meV
as determined experimentally), and corresponds to the
optimum doping δ = 0.17. The bandwidth of the disper-
sion given in equation (19) is 1.4 eV.

3 Transport properties

3.1 Resistivity

Theoretical results. The leading order contribution to the
DC-conductivity is given by the first term in equation (4),
thus Â−1

k,k′ is replaced by K̂−1
k,k′ and inserted into equa-

tion (7). The operator K̂−1
k,k′ , applied on a velocity vk gives

vkτk, as already discussed in Section 2. Therefore, the DC-
conductivity is given by:

σxx = 2e2
∑
k

(
−∂f

0
k

∂εk

)
(vxk)2τk. (20)

In the limit T → 0 we can obtain a finite contribution
to σxx depending on the width w and on the angle θ
(determining the area of the hot region). As τk given in
equation (16) doesn’t diverge in the case w 6= 0 (because
Ψk 6= 0 even inside the cold region), we get a finite con-
tribution to σxx and a residual resistivity at zero temper-
ature. Note that the residual resistivity is determined by
the width w and b̄(1 − α), thus the T -independent part
in the coefficient CΨ . In the limit w → 0 we separate two
regions in the BZ and we can consider a hot and a cold av-
erage velocity, vh and vc respectively. In the limit of low T
and w → 0, the DC-conductivity is given by

lim
w→0

σxx = e2
[
v2

cτcNc(εF) + v2
hτhNh(εF)

]
. (21)

The quantity Nc(εF) is the density of states at the
Fermi level in the cold region, Nc(ε) =

∑
k δ(εk − ε)Φk,

while Nh(εF) is the same quantity in the hot region, with
Nh(ε) =

∑
k δ(εk − ε)Ψk. Figure 3 shows the density of

states in the hot (upper panel) and in the cold region
(lower panel) as a function of the size of the hot region
(determined by the angle θ) in the limit w → 0, ob-
tained using the band dispersion given in equation (19).
Equation (21) shows that cold and hot regions are wired
in parallel, while each region (cold/hot) is wired in series
with the transition region (in the case w = 0), as shown
by the structure of τc and τh given in equation (17). In
the limits mentioned above the temperature dependence
of the resistivity up to second order in T is given by:

lim
w→0

ρxx =
1
e2

(1− α)c̄
v2

cNc(εF)
T (22)

×
[

1 +

(
α

1− α
ā

c̄
− c̄

b̄

(
vh

vc

)2
Nh(εF)
Nc(εF)

)
T

]
.

As both lifetimes τc and τh for w = 0 diverge in the limit
T → 0, the resistivity has no zero temperature offset,
ρ(T → 0) = 0. However an offset can be obtained by a
finite width w as discussed above.
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Fig. 3. The overall shape of the hot density of states Nh(ε)
(upper panel), doesn’t change with θ, while the magnitude at
the Fermi level changes. In the case of the cold density of
states Nc(εF) (lower panel), both the overall shape and the
magnitude at the Fermi level changes. The position of the
Fermi level EF, corresponding to optimum doping, is also re-
ported. Note the changement of sign in the derivative of Nc(εF)
for θ = 12.9◦.

In our two-patch model we can associate the dop-
ing variation of the electronic properties of the cuprates
mainly with the variation of the area of the hot region
and hence with the angle θ. Indeed, ARPES experiments
on Bi2212 show that the region of the BZ where the spec-
tral function is broad and no quasiparticle peaks are de-
tectable increases as the doping is reduced. A small seg-
ment of (quasiparticle) FS is observed approaching the
metal-insulator transition [9]. Therefore, we can translate
this behavior of the FS and of the spectral function saying
that when the doping is decreased, the angle θ increases
(i.e., the size of the hot region increases). Figure 4 shows
the change in resistivity with increasing angle θ; we ob-
tain that the residual resistivity increases with increasing
angle θ. As can be seen in equation (22) the hot/cold
scattering term c̄ is the most important quantity in de-
termining the slope of the resistivity respect to the other
scattering amplitude ā and b̄. The variation of the slope
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Fig. 4. Resistivity ρ(T ) for different sizes of the hot region
(i.e. different θ) as a function of temperature. The variation
of the hot region changes the offset of the resistivity. It can
be seen that increasing the area of the hot region increases
the residual resistivity ρ0 and change slightly the power law
behavior ρ(T ) ∼ T γ. The following parameters are used: ā =
48, b̄ = 2, c̄ = 7 and w = 0.3. θ changes between 10◦ and 30◦.
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Fig. 5. The amplitude of the scattering between the cold and
the hot region, described by c̄, determines the slope of the
resistivity. Note that ρ0 does not change. Increasing the inter-
patch scattering determines an increasing in the slope of the
DC-resistivity. The following parameters are used: ā = 48, b̄ =
2, θ = 20◦ and w = 0.3. c̄ changes between 5 and 9.

with c̄ is reported in Figure 5. Note that a variation in
c̄ doesn’t change the residual resistivity. Moreover, the
slope of the resistivity is controlled by the single parti-
cle properties of the cold region, in particular by the cold
density of states Nc(εF) and by the Fermi velocity v2

c ,
and by the area of the cold region α, as obtained in equa-
tion (22). On the other hand, the influence of the prefactor
(1− α)/(v2

cNc(εF)) on the slope of the resistivity is small
in comparison with the influence of c̄, as can be seen in
Figures 4 and 5, because of compensation effects: vcNc(εF)
is roughly θ independent and also the ratio (1 − α)/vc is
expected to vary smoothly with θ.

Comparison with experiments. The linearity of the re-
sistivity up to very high temperatures was found experi-
mentally (see, e.g. [7]). Experiments show a quasi-linear
temperature dependence of the resistivity ρxx(T ) ∝ T γ ,
where in reference [7] it is shown that γ increases with
doping. For optimally doped systems γ = 1, while for
overdoped systems a γ > 1 (γ ' 1.5) is observed, sup-
porting a gradual recovering of the Fermi liquid proper-
ties. The doping dependence of the exponent γ can be
compared with our results in Figure 4, showing that small
values of θ (θ < 15◦) give a resistivity ρ(T ) ∼ T γ with
γ > 1. Moreover the residual resistivity ρ0 = ρ(T = 0)
increases with underdoping and this is in agreement with
the trend obtained in Figure 4. Therefore, the two-patch
model provides the possibility to change the doping mainly
by changing the angle θ, besides considering the doping
dependence of εF and vF(k). Note that the range of the
change in ρ with changing doping is observed in refer-
ence [7] as well. Figure 1 of reference [7] shows that for
underdoped Bi2201 (with a La concentration of x = 0.66)
the offset ρ0 ' 150 µΩcm, while for the overdoped com-
pound (with x = 0.24) ρ0 ' 40 µΩcm. The increase in the
slope and in the offset of the resistivity is also observed
in Y 123 as the doping is reduced [42]: the offset changes
between 250 µΩcm and 20 µΩcm (Fig. 1(a) of Ref. [42]).
The same range of variation is given in our results of Fig-
ure 4 considering the range 10◦ < θ < 25◦. Within the
described change in θ a big variation of doping can be
described.

In the following paragraph we report a simple explicit
comparison between the transport properties here evalu-
ated and the experimental data via a fitting procedure.
The comparison here presented is limited to the Bi-based
cuprates (Bi2212 and Bi2201) for which several ARPES
and transport experimental data are available.

The strategy of fitting the experimental data is the fol-
lowing. We introduce a temperature scale T0 upon which
the term linear in T in the scattering rate in the cold
region dominates. This guarantees us that the resistivity
is linear up to this temperature T0. We choose a tem-
perature T0 that has a value of ≈ 1000 K. The relations
ā = (1−α)c̄/(αT0) and b̄ = αc̄T0/(1−α) allows us to ob-
tain first values of ā and b̄ for given T0 and c̄. The width of
the transition region w is fixed mainly by the magnetore-
sistance as shown in Section 3.4. Starting with different
angles θ (i.e. different sizes of the hot region), we try to
get a good fit of Hall-angle data as shown in Section 3.3.
Then we try to fit the Hall-angle and the slope of the
resistivity for different combination of θ and c̄. It turns
out that the angle θ ≈ 20◦ and the value c̄ ≈ 6.5 gives
a good fit of the Hall-angle and of the slope of the resis-
tivity. After that, we change the scattering amplitude b̄ in
the hot region. Increasing b̄ leads to an higher resistivity
and thus the parameter b̄ allows us to adjust the offset
of the resistivity. In this manner we can fix the parame-
ters w, θ, c̄, b̄. The last parameter that is to be fixed is
ā. The freedom for the parameter ā is not big, in order
to maintain the linearity of the resistivity. Thus the ini-
tial condition we have chosen for ā can remain valid. We
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Fig. 6. Fit of the temperature dependence of the resistivity for
the set of parameters given in the text. The experimental data
are from an optimally doped Bi2212 samples from reference [1]
and from reference [34].

obtain a reasonable fit for the different transport quanti-
ties with the following values of the parameters:w = 0.20,
ā = 60, b̄ = 2.1, c̄ = 7.0 and θ = 20◦. In Figure 6 we report
the resistivity as a function of temperature evaluated by
equation (20) with the set of parameters given above and
we compare our results with the resistivity measured in
Bi2212 at optimum doping as given in reference [1] and in
reference [44].

3.2 Thermoelectric power

Theoretical results. To evaluate the thermoelectricpower
(TEP), which is the quantity measured in experiments,
we first compute the longitudinal thermopower Sxx given
in equation (9). The thermopower has almost the same
expression as the DC-conductivity besides the extra factor
of εk and an extra minus in the sum, and it is given by

Sxx = −2e
∑
k

(
−∂f

0
k

∂εk

)
ε(k)(vxk)2τk. (23)

A Sommerfeld-expansion of equation (23), in the limit
of w = 0 and at low temperature, gives

lim
w→0

Sxx = −eπ
2

3
(kBT )2

[
v2

c τcN
′
c(εF) + v2

hτhN
′
h(εF)

]
(24)

with the first derivatives of the density of states N ′c,h(εF)
evaluated at the Fermi level in the cold and in the hot
regions. We found that Sxx has a smooth dependence on
w and hence the limit mentioned above is valid also for
small values of the width w. As in the case of conductivity,
because τc � τh and vc � vh, the main contribution to the
thermopower comes from the cold region. It is interesting
that the Fermi level is below the peak in the cold density
of states for θ > 10◦ (see Fig. 3 (lower panel)). The peak
in Nc(ε) is exactly at the Fermi level for θ ≈ 10◦. The
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Fig. 7. Temperature dependence of the thermoelectric power
for different angles θ. The following parameters are used: ā =
48, b̄ = 2, c̄ = 7 and w = 0.3. θ changes between 10◦ and 30◦.

TEP, as measured in the experiments mentioned above, is
defined as

TEP =
Sxx

Tσxx
, (25)

where σxx is given in equation (20). Again the cold region
has the main influence. The expression of the TEP in the
limit of w = 0 and at low temperatures is given by

TEP = −π
2

3e
k2

BT
N ′c(εF) + [(v2

hτh)/(v2
c τc)]N ′h(εF)

Nc(εF) + [(v2
hτh)/(v2

c τc)]Nh(εF)

≈ −π
2

3e
k2

BT
N ′c(εF)
Nc(εF)

, (26)

where the last relation is obtained in the limit τc � τh
and vc � vh. Therefore the ratio between the derivative
of the density of states and the density of states evaluated
at the Fermi level in the cold region is the main quantity
that determines the slope of the TEP at low temperature.
Increasing the temperature above 200 K, we have veri-
fied that the contribution of the hot region to the TEP
becomes comparable to the contribution from the cold
one. Note that in the case of the TEP the offset doesn’t
change varying w. We found that the TEP is the most sen-
sitive quantity to a variation of the electronic structure,
in agreement with reference [3]. This is done by changing
the hopping parameters c1 and c2 in equation (19). Fig-
ure 7 shows the TEP obtained from the two-patch model
for different angles θ. For θ ≥ 10◦ the TEP is negative and
the slope of the TEP at low temperature changes slightly
with different angles θ > 10◦. We found that, as predicted
in the limit given in equation (26), the TEP is almost
not affected by other parameters than θ. Nonetheless we
got the largest effect on it from the scattering in the hot
region. Again the slope doesn’t change so much and the
offset changes also slightly when the hot-scattering b̄ is
changed of a factor 5, as shown in Figure 8.

Comparison with experiments. In Figure 9 we report
the TEP evaluated by equation (23) with the same set
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patch model and the thermoelectric data given by McIntosh
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and overdoping (δ = 0.077)).

of parameters used for the resistivity (w = 0.20, ā = 60,
b̄ = 2.1, c̄ = 7.0, θ = 20◦) and we compare our results
with the TEP measured in Bi2201 at optimum and over
doping as given in reference [3] and with the TEP mea-
sured in Bi2212 at optimum and overdoping as given in
reference [47]. The TEP obtained with our two-patch
model is only in qualitative agreement with the TEP ob-
served by experiments. In particular only the overdoped
Bi2201 has a TEP with a temperature dependence close
to the one evaluated within the two-patch model. Note
also that the TEP measured in overdoped Tl2201 cuprates
has almost the same temperature dependence and magni-
tude of overdoped Bi2201 (and hence close to the TEP
of the two-patch model), as shown in Figure 1 of refer-

ence [47]. We attribute the quantitative discrepancy be-
tween the TEP measured in optimally and underdoped
cuprates to the fact that the TEP reflects the properties
of the excitations away from the FS and hence the fre-
quency dependence of the scattering amplitude becomes
important, as shown by DMFT studies [41]. We deserve
the inclusion of the frequency dependence of the scattering
amplitudes for future investigation.

3.3 Hall angle

Theoretical results. The leading order contribution to the
Hall-conductivity σxy is given by the second term in the
expansion of the operator Â−1 respect to the (weak) mag-
netic field, Â−1 = −K̂−1M̂BK̂

−1. Inserting this term into
equation (7), we get the Hall-conductivity σxy. The bend-
ing term in Â−1 is

(vk ×B)∇k = B(vyk∂kx − vxk∂ky ), (27)

that arises from the operator M̂B considering a magnetic
field perpendicular to the CuO2 planes. In this case, the
formula for the Hall-conductivity is the following

σxy = −2
e3B

~c
∑
k

τkv
x
k

[
vyk∂kx − vxk∂ky

]
τkv

y
k

(
−∂fk

∂εk

)
·

(28)
The partial derivatives of the relaxation time
τk enter in equation (28) and are given by
∂τk/∂kx = −τ2

k(∂Φk)/(∂kx) [CΦ − CΨ ] and ∂τk/∂ky =
−τ2

k(∂Φk)/(∂ky) [CΦ − CΨ ] respectively (note that
∂Φk/∂kx = −∂Ψk/∂kx). The final expression for the
Hall-conductivity is

σxy = −2e3B

~c
∑
k

(
−∂fk

∂εk

)
τ2
kv

x
k

[
vyk
∂vyk
∂kx
− vxk

∂vyk
∂ky

]
(29)

+
2e3B

~c
∑
k

(
−∂fk

∂εk

)
τ3
kv

x
k(vyk)2 ∂Φk

∂kx
[CΦ − CΨ ]

−2e3B

~c
∑
k

(
−∂fk

∂εk

)
τ3
k(vxk)2vyk

∂Φk

∂ky
[CΦ − CΨ ] .

This expression contains two different powers of the scat-
tering time, one ∝ τ2

k and another ∝ τ3
k . In the limit

w → 0 we can get some further insight in the problem
of the Hall-conductivity. In the low temperature limit the
sum over k is restricted on the FS. The Hall-conductivity
contains in this limit derivatives of step functions and
hence δ-functions are generated. As a consequence we
get 8 points on the FS that contribute to the second
and third term in equation (29). The temperature depen-
dence of the relaxation time τ0 evaluated in the transi-
tion region hot/cold on the FS can be written, using in
this region Φk = Ψk = 1/2 and using equation (16), as
τ0 = 1/(2CΦ + 2CΨ ) = 1/(c̄0 + c̄1T + c̄2T

2). In this limit
equation (29) can be written in a more compact form as

lim
w→0

σxy = σxy1 +
2e3B

~c
4τ3

0 [CΦ − CΨ ]

× {vy(A)vy(B) [vy(B)− vy(A)]} [q − 1]
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Fig. 10. The size of the hot region determines the offset of the
Hall-angle. In the case of θ = 30◦, which is equivalent to 3/4
of the first BZ with hot character, the offset in the Hall angle
is close to 50. Note that we plot cot θH vs. T 2. The following
parameters are used ā = 48, b̄ = 2, c̄ = 7 and w = 0.3. θ
changes between 10◦ and 30◦. The magnetic field is B = 1 T.

where σxy1 is the first term in equation (29), A and B label
the contributing points on the FS in the first quadrant of
the BZ and q is either tan θ or cot θ depending on θ respect
to the value θ ' 10◦. Note that we get an offset to σxy

from the last terms even in the limit w → 0. Increasing w,
also the first term in (29) contributes to the offset due to
the same reasons given for the resistivity. The first term
in (29) contains the customer contribution proportional
to τ2

k while the second term contains higher powers in τk
and can originate deviations from the τ2

k behavior depend-
ing from the temperature and the scattering amplitudes.

The cotangent of the Hall-angle is defined as the ratio
between the direct conductivity and the Hall conductivity,

cot θH(T ) =
σxx

σxy
· (30)

A plot of cot θH vs. T 2 (see Fig. 10) shows that the cotan-
gent of the Hall-angle has a temperature dependence ∝ T 2

in the high temperature regime (T > 200 K), where we
observe almost a straight line. It can also be seen in Fig-
ure 10 that the range of temperature where cot θH ∼ T 2

increases with decreasing θ (i.e. increasing doping). Kon-
stantinovic et al. [6] pointed out the strong influence of
the anisotropy of the FS on the Hall-angle. We reproduced
this observation by changing the hopping parameters c1
and c2 in equation (19) but we found that the effect of
this change has even bigger effects on the TEP, as al-
ready discussed. Among the other parameters we found
the strongest influence on cot θH(T ) from the inter-patch
scattering amplitude c̄. The effect of c̄ on the Hall-angle
is shown in Figure 11. It can be seen that this parameter
changes the temperature range where cot θH ∼ T 2 only
slightly and the offset is independent on c̄. The larger the
value of c̄ is the smaller the deviation of the Hall-angle
from a straight line is, which means that increasing the
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Fig. 11. Effect of the hot/cold inter-patch scattering on the
Hall-angle. It turns out that c̄ has an effect on the temperature
dependence of the Hall-angle, but no significant effect on the
offset of the Hall-angle contrary to θ. The following parameters
are used: ā = 48, b̄ = 2, θ = 20◦ and w = 0.3. c̄ changes
between 5 and 9. The magnetic field is B = 1 T.

cold/hot scattering has opposite effect as decreasing the
angle θ. On the other hand changing θ (i.e. doping) effects
the offset of the Hall-angle. In the framework of the two-
patch model we obtain a decreasing offset of the cotangent
of the Hall-angle with increasing doping and an increas-
ing value of the power law coefficient γ (cot θH ∝ T γ) with
increasing doping.

Comparison with experiments. As already discussed,
the range of temperature where cot θH ∼ T 2 increases
with decreasing θ (i.e. increasing doping) (see Fig. 10),
which is contrary to the results given in [6] and [7], but
in agreement with the results of reference [42]. Indeed a
careful examination of various set of experimental data
for cot θH vs. T 2 indicates that the exact T 2 dependence
does not extend over the whole temperature range, and
deviations are observed for T < 300 K. As shown in refer-
ence [42], e.g., in Y123 as Tc is lowered by underdoping,
the range of the T 2 dependence of cot θH moves toward
higher temperatures (for Tc = 90 K, the deviation start
at T = 100 K, while for Tc = 40 K, the deviation start at
T = 170 K). On the other hand changing θ (i.e. doping)
effects the offset of the Hall-angle which was found in [7].
Indeed in Figure 3b of reference [7] the change in the off-
set of the cotangent of the Hall angle between underdoped
(x = 0.66) and overdoped (x = 0.24) Bi2201 compounds
measured at T ' 280 K (T 2 ' 8× 104 K2) is of the order
of 1300, a value which is compatible with our finding of
Figure 10 ('2000) considering again 10◦ < θ < 25◦ as
in the case of the resistivity discussed in Section 3.1. In
the case of Y 123 the slope of cot θH vs. T 2 increases when
the doping is reduced (almost 30% of variation, when Tc

is reduced from 90 K for optimally doped to 40 K for an
underdoped Y123, while in this case the offset increases
only slightly (see Figs. 1e, 3 and 4 of Ref. [42]). Note that
for Y123 a non monotonic behavior of the slope of cot θH



498 The European Physical Journal B

20

25

30

35

40

45

50

55

60

65

70

0 50 100 150 200 250 300 350 400

(C
ot

g 
θ H

)0.
5

T(K)

Two-patch
Bi2212 (p=0.16)
Bi2201 (x=0.44)

Fig. 12. Comparison between the experimental data for the
Hall angle and the Hall angle obtained from our two-patch
model using the set of parameters given in the text. The experi-
mental data that are shown in the plot correspond to Bi2212 at
optimum doping from reference [6] and to Bi2201 at optimum
doping from reference [7].

vs. T 2 as a function of doping is observed in a different
set of measurements reported in reference [43]. This can
be understood remembering that we increase the hot re-
gion increasing θ (i.e. decreasing doping). In the frame-
work of the two-patch model we obtain a decreasing offset
of the cotangent of the Hall-angle with increasing dop-
ing and an increasing value of the power law coefficient γ
(cot θH ∝ T γ) with increasing doping.

In Figure 12 we report the cotangent of the Hall an-
gle evaluated by equation (30) with the same set of pa-
rameters used for the resistivity and the TEP (w = 0.20,
ā = 60, b̄ = 2.1, c̄ = 7.0, θ = 20◦) and we compare our
results with the cotangent of the Hall angle measured in
Bi2212 at optimum doping as given in reference [6] and in
Bi2201 again at optimum doping as given in reference [7].
The agreement with the data obtained in Bi2212 is good
and also a qualitative agreement is obtained if we com-
pare the results obtained with the two-patch model and
the band structure of Bi2212 with the experimental data
for Bi2201 at optimum doping.

3.4 Magnetoresistance

Theoretical results. The magnetoresistance (MR) is de-
fined as the ratio of the variation in the resistivity in pres-
ence of a magnetic field to the resistivity without magnetic
field. In the transverse geometry, with the magnetic field
applied perpendicular to the CuO2 planes and the current
measured parallel to the planes, the MR is given by

MR =
∆ρxx(B)
ρxx(0)

≈ −∆σ
xx(B)

σxx(0)
− tan2 θH. (31)

In this geometry, the first extra contribution to
the DC-conductivity, ∆σxx(B) is achieved by the
third term in equation (4), thus we have to insert
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Fig. 13. The effect of variation in the angle θ on the MR.
The MR decreases increasing the area of the hot region. In the
limit where the whole BZ is hot (θ = 45◦) the MR is zero. The
parameters are ā = 48, b̄ = 2, c̄ = 7 and w = 0.3. θ changes
between 10◦ and 30◦. The magnetic field is B = 1 T.

Â−1 = K̂−1M̂BK̂
−1M̂BK̂

−1 into equation (7). We get an
expression for the correction to the conductivity given by

∆σxx(B) = 2e2
∑

k,k1,k2,k3,k4,k5

vxkK̂
−1
k,k1M̂k1,k2K̂−1

k2,k3

×M̂k3,k4K̂−1
k4,k5v

x
k5

(
− ∂f

∂εk5

)
· (32)

In this case it is necessary to consider partial deriva-
tives of τ2

k with respect to kx or ky, which are
given by ∂τ2

k/∂kx = −2τ3
k∂Φk/∂kx [CΦ − CΨ ] and

∂τ3
k/∂kx = −3τ4

k(∂Φk)/(∂kx) [CΦ − CΨ ]. Finally we ob-
tain ∆σxx(B) as:

∆ σxx (B)=2
e4B2

(~c)2

∑
k′

(
− ∂f
∂εk′

)
τk′v

x
k′

[
vyk′∂k′x − v

x
k′∂k′y

]
×
{
τ2
k′

[
vyk′∂k′xv

x
k′ − vxk′∂k′yv

x
k′

]
(33)

+ τ3
k′ (CΦ − CΨ )

[
(vxk′)

2 ∂Φk′

∂k′y
− vxk′vyk′

∂Φk′

∂k′x

]}
·

We get three contributions to∆σxx(B) with different pow-
ers of τk, ∝ τ3

k , ∝ τ4
k and ∝ τ5

k . This formula is inserted
in equation (31) together with the Hall-angle computed
in the previous subsection. We are now able to compute
the MR for different parameters. As shown in Figure 13, a
change in the angle θ (and hence in doping) has a sizeable
effect on the MR and decreasing the angle θ (i.e. increas-
ing doping) increases the MR in our model. The effect of
the transition width w is studied in Figure 14. It can be
seen that this quantity becomes more and more important
the smaller it becomes. A big difference in the MR can be
observed between w = 0.1 and w = 0.2, which is in agree-
ment with the results for the MR evaluated within a cold
spots model by Zheleznyak et al. reported in reference [45].
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Fig. 14. The MR diverges in the limit w → 0. The influence
of w on the MR is very strong, so the MR allows us to fix
the parameter w quite well as other quantities don’t depend
strongly on w. We used the parameters ā = 48, b̄ = 2, c̄ = 7
and θ = 20◦ in the plot. w varies between 0.1 and 0.5. The
magnetic field is B = 1 T.

Comparison with experiments. Ando et al. reported
that the orbital MR increases with increasing doping, as
shown in Figure 5 of reference [7]. (The orbital contribu-
tion to the MR can be obtained by the transverse com-
ponent of MR subtracting the longitudinal component,
eliminating in this way the contribution of the spins to the
MR.) This experimental result is derived in our model. In
Figure 15 we report the magnetoresistance evaluated by
equation (31) with the same set of parameters used for
the other transport properties above discussed (w = 0.20,
ā = 60, b̄ = 2.1, c̄ = 7.0, θ = 20◦) together with B = 1 T
and we compare our results with the orbital magnetoresis-
tance measured in Bi2201 at optimum doping and slightly
underdoping as given in reference [7]. (MR data for Bi2212
are not yet available to our knowledge). For the high dop-
ing level and range of temperature here considered the
longitudinal MR is an order of magnitude smaller than
the transverse MR and its contribution to the orbital MR
is therefore small.

While the order of magnitude and the qualitative tem-
perature dependence of the MR evaluated with the two-
patch model agree with the MR data for Bi2201, a quan-
titative discrepancy is observed taking fixed the set of
parameters we used to evaluate the previous transport
properties. On the other hand a change in w from w = 0.2
to w = 0.1 can increase the MR curve shown in Figure 15,
leading to a better agreement with the low temperature
MR data for Bi2201. Note that the width of the transi-
tion region w is associated to the properties of the elec-
tronic scattering and its value can be material dependent,
even in presence of a similar FS and band structure. A
temperature dependence of the coefficient w seems nec-
essary to improve the fit of the MR data. MR data for
optimally doped Bi2212 could permit a more careful com-
parison with the prevision of the two-patch model here
presented.
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Fig. 15. Comparison between the magnetoresistance obtained
from the two-patch model and the orbital magnetoresistance
of an optimally doped (x = 0.44) and slightly underdoped
(x = 0.57) Bi2201 from Ando et al. [7].

3.5 Thermal Hall conductivity

Theoretical results. The thermal-Hall conductivity is eval-
uated using equation (8). In this case the operator Â−1

has the form K̂−1M̂BK̂
−1. Replacing e2 → ε2k in equa-

tion (29) gives us the result for κxy.

κxy = −2eB
~c

∑
k

ε2k

(
−∂f

0
k

∂εk

)
τ2
kv

x
k

[
vyk
∂vyk
∂kx
− vxk

∂vyk
∂ky

]
+

2eB
~c

∑
k

ε2k

(
−∂f

0
k

∂εk

)
τ3
kv

x
k(vyk)2 ∂Φk

∂kx
[CΦ − CΨ ]

−2eB
~c

∑
k

ε2k

(
−∂f

0
k

∂εk

)
τ3
k(vxk)2vyk

∂Φk

∂ky
[CΦ − CΨ ] .

(34)

In Figure 16 the thermal-Hall conductivity is reported
as a function of the temperature. The various curves
correspond to different values of the angle θ and we ob-
tain a large increase of κxy as the angle θ is decreased.
As in the case of the other transport properties, the cold
patches has the main influence in determining κxy, even
if the contribution to κxy from the hot patches is sizeable
as in the case of the TEP. The role of the inter-patches
coupling in κxy is studied changing the scattering ampli-
tude c̄ and the results are reported in Figure 17, showing
that increasing c̄ tends to suppress κxy in a sizeable way.
The same behavior is observed considering the role of the
hot patches, changing the scattering amplitude b̄.

Considering the qualitative correspondence between
decreasing doping and increasing θ discussed above, the
two-patch model suggests that in underdoped cuprates the
thermal-Hall conductivity should be strongly suppressed
with respect to the one measured in optimally and over-
doped cuprates. This conclusion is also supported by the
fact that the electronic scattering in the hot region (and



500 The European Physical Journal B

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 50 100 150 200 250 300 350 400

κxy
(W

/m
*K

)

T(K)

θ=10
15
20
25
30

Fig. 16. The thermal-Hall conductivity (like electrical trans-
port properties) is mostly influenced by the cold region. We use
the following parameters: ā = 48, b̄ = 2, c̄ = 7 and w = 0.3. θ
changes between 10◦ and 30◦.
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Fig. 17. A change in c̄ shifts the thermal Hall conductivity:
an increasing of the inter-patch scattering leads to a decreasing
of the thermal-Hall conductivity. The following parameters are
used: ā = 48, b̄ = 2, w = 0.3 and θ = 20◦. c̄ changes between 5
and 9.

hence b̄) should increase in the underdoped regime due to
the proximity to the antiferromagnetic phase.

Comparison with experiments. In Figure 18 we report
the thermal-Hall conductivity evaluated by equation (34)
with the same set of parameters used for the other trans-
port properties above discussed (w = 0.20, ā = 60,
b̄ = 2.1, c̄ = 7.0, θ = 20◦). Again, experimental data for
κxy for the Bi-based cuprates are to our knowledge not
yet available. The temperature dependence of κxy agrees
quite well as regard the magnitude with the data for κxy
measured for an optimally doped YBCO [8], even if this
material has some differences in the band structure and
FS respect to the Bi-based cuprates.
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Fig. 18. Thermal-Hall conductivity κxy vs. temperature ob-
tained from the two-patch model with the same set of param-
eters given in the text. The temperature dependence of κxy

agrees quite well as regard the magnitude with the data for κxy

measured for an optimally doped YBCO [8].

4 Conclusion and discussion

Normal state transport properties of cuprate supercon-
ductors have been studied using a semi-classical approach
based on the linearized Boltzmann equation (BE). The
probability of scattering between the electrons of the con-
duction band and an effective collective mode is assigned
by a scattering matrix defined on a Brillouin zone (BZ)
divided in two kind of patches. One kind of patches, cen-
tered in the M points of the BZ, contains hot states, which
are strongly interacting, and is characterized by a low
Fermi velocity and an high local density of states. The
other kind of patches, centered in the nodal points along
the BZ diagonals, contains cold states, which are weakly
interacting, and is characterized by an high Fermi veloc-
ity and a low local density of states. In the multi-patch
model the scattering matrix is assumed to be a sum of
separable terms (in k and k′) having coefficients with a
temperature dependence which can be non conventional,
according to the properties of the scattering. In the case
of the two-patch model, the scattering matrix is a sum
of a term describing the scattering between the electrons
inside the hot patches with a large amplitude and tem-
perature independent, a term describing the scattering
inside the cold patches with a smaller amplitude and de-
pendent on the temperature as T 2, and a term including
in a symmetric way the inter-patch scattering, with a lin-
ear temperature dependence. With this phenomenological
choice of the scattering matrix, the BE is exactly solv-
able, and all the transport properties (at least in the weak
field regime) can be evaluated. The resulting scattering
amplitude 1/τk is strongly momentum dependent (in par-
ticular along the Fermi surface) and the low temperature
behavior is always non Fermi liquid, with a linear temper-
ature dependence in the cold patches and a constant in the
hot patches, as suggested by recent ARPES experiments
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performed on Bi2212 [20]. The deviation of the distribu-
tion function from the equilibrium is strongly suppressed
in the hot patch because of the strong scattering, while
in the cold patch it has a sizeable value, because of the
weaker scattering, giving the largest contribution to trans-
port.

The two-patch model here introduced has similarities
as well differences with the model of Hlubina and Rice [13].
Hlubina and Rice consider a model where the fermions are
scattered by an antiferromagnetic spin fluctuation. The
propagator of the spin fluctuations is peaked at the an-
tiferromagnetic wave-vector Q ≡ (π;π) and hence cou-
ples mainly states around the M points, giving rise to
hot spots, while the states around the nodal points are
weakly coupled, giving rise to cold regions. The scattering
matrix correspondent to this interaction has two differ-
ent temperature regimes: (i) the low temperature regime,
where the scattering between the hot states has a

√
T

behavior, the scattering between the cold states has a T 2

Fermi liquid behavior and the scattering between hot/cold
states has again a T 2 behavior; (ii) the high temperature
regime is instead similar to our two-patch model, having
a constant scattering between the hot states, a quadratic
(∼ T 2) scattering between the cold states and a linear
in T scattering between hot/cold states. Therefore, the
model of Hlubina and Rice gives at low temperature a T 2

(Fermi liquid) temperature dependence of the resistivity,
while our two-patch model gives a linear in T (non-Fermi
liquid) behavior of the resistivity even at low temperature.

An additive two-lifetime model, with similarities to our
two-patch model, as been previously proposed [45]. The
results obtained within this model are based on a peculiar
Fermi surface, characterized by large flat regions parallel
to the ΓM directions having a short relaxation time (hot
regions) and small sharp corners around the nodal points
along the ΓY (X) directions having a long relaxation time
(cold regions). Moreover the band structure considered
in reference [45] is such that the Fermi velocity is large
in the hot region and small in the cold region. The au-
thors suggest that this peculiar single particle properties
are typical for YBCO at optimum doping. ARPES exper-
iments for Bi2212 and Bi2201 do not support this picture,
and in particular the ratio between the Fermi velocity is
the opposite, having large Fermi velocity in the cold re-
gion and small (almost undefined) Fermi velocity in the
hot region. The flat region of Fermi surface observed in
Bi-based compounds is also much smaller than the one
proposed in reference [45]. This flat shape of the Fermi
surface seems more appropriate for La-based underdoped
cuprates, where stripe correlations can select preferred di-
rections on the Fermi surface [46]. The regions of the Fermi
surface controlling the transport properties in the addi-
tive two-lifetime model and in our two-patch model are
different. In particular the conductivity is controlled in
the first case by the flat (hot) regions, while in our case
is controlled by the curved (cold) regions, mainly because
of the completely different ratio between the Fermi veloci-
ties. In the two-lifetime model the scattering amplitude in
the hot region has a linear temperature dependence and

a quadratic (Fermi liquid like) temperature dependence
in the cold region. Therefore in this model the resistivity
is linear in temperature, while the cotangent of the Hall
angle is roughly quadratic in temperature, being the Hall
conductivity mainly controlled by the regions of Fermi sur-
face with sizeable curvature (as the corners). In our ap-
proach both the resistivity and the Hall conductivity are
mainly controlled by the cold regions of the Fermi surface,
where, as already discussed, the scattering amplitude has
a non Fermi liquid character at low temperature.

A further comparison can be done with the model pro-
posed by Ioffe and Millis [11], where the scattering ampli-
tude is a sum of two terms, one temperature independent
with an angle dependence along the Fermi surface with a
deep (quadratic) minimum along the diagonal directions
(ΓY (X)) and the other Fermi liquid-like, with a quadratic
temperature dependence. At low temperature this model
gives a large scattering amplitude constant in temperature
in the (large) hot region and a scattering amplitude with
a T 2 Fermi liquid temperature dependence in the (small)
cold region (cold spots). The linear resistivity is obtained
in this model because the conductivity is dominated by a
small (cold) region which has a length proportional to the
temperature, where the scattering is Fermi liquid-like. In
our two-patch model the area (and hence the length) of
the cold region is considered to be temperature indepen-
dent and a direct comparison with the model of Ioffe and
Millis is not possible. The form of the scattering ampli-
tude proposed in this cold spots model is similar to the
form proposed by Valla et al. [20] to describe the tem-
perature and momentum dependence of the width of the
(quasiparticle) peak in the ARPES spectra. On the other
hand the experiments are consistent with a linear tem-
perature dependence of the width around the zone diag-
onals. Interestingly, a quasiparticle peak is present in the
ARPES spectra for all the Fermi wave-vector along the
curved area of the Fermi surface, which is clearly not only
a sharp corner, but a sizeable fraction (almost the half)
of the whole Fermi surface. Of course a direct compar-
ison between the scattering amplitude or the scattering
matrix elements proposed in the various models and the
ARPES line-shape is not possible and only some quali-
tative understanding can be obtained from ARPES ex-
periments without a microscopic theory which is able to
connect two-particle and single-particle properties.

Another model for magnetotransport in cuprates has
been recently proposed by Varma and Abrahams [48].
This model combines the marginal Fermi liquid hypoth-
esis for the inelastic scattering rate (linear in T ), with
the hypothesis that small-angle forward scattering is act-
ing in the cuprates due to the scattering of the electrons
of the CuO2 planes with the out of plane impurities; the
forward scattering term in the scattering rate results tem-
perature independent and strongly anisotropic. The total
form of the scattering rate is again similar to the form
proposed by Valla et al. [20] to fit the ARPES spectra of
Bi2212 as already discussed. Solving the BE, the authors
show that forward scattering is responsible for a correc-
tion term in tan θH respect to the customary contribution
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and this term has the temperature dependence of the re-
sistivity squared. In our approach the correction term cor-
responds to the second and third terms in equation (29),
proportional to τ3. On the other hand in our two-patch
model we obtain a finite contribution from the first term,
proportional to τ2 (the customary term), which is of the
order or larger of the other terms. A detailed comparison
between the two approaches requires to consider a five-
patch model as discussed in Section 2.

Our systematic analysis of normal state transport
properties of cuprate superconductors, including resistiv-
ity, thermoelectric power, Hall conductivity, magnetore-
sistance and thermal-Hall conductivity, permits to under-
stand which is the role of the patch geometry, of the Fermi
surface and of the scattering matrix elements in determin-
ing the magnitude and the temperature dependence of the
various electrical and thermal transport properties. In par-
ticular, the linear temperature dependence of the resistiv-
ity is associated to the inter-patch scattering, and its slope
is determined by the amplitude of the inter-patch scatter-
ing but also by the single particle properties in the cold
patch, as the cold density of states evaluated at the Fermi
level and the cold Fermi velocity. The Hall conductivity is
also governed by the cold patch and the interplay between
the various power law coming from the scattering time and
from its partial derivatives gives the possibility to obtain
a cotangent of the Hall angle with a T γ behavior (with
γ > 1.5) in a range of temperature where the resistivity is
linear. The different power law behavior of resistivity and
cotangent of the Hall angle indicates that the momentum
dependence of the scattering time along the Fermi surface
plays an important role and can originate a different char-
acteristic scattering time for longitudinal and transverse
transport. The magnetoresistance is mainly determined at
low temperature by the inter-patch region, and in partic-
ular its expression contains the second derivative of the
scattering time. Therefore, the transition between the hot
and the cold patches has to be smooth, in order to avoid a
spurious divergence. Thermal transport is also considered
in our systematic analysis. Thermoelectric power (TEP),
as thermal-Hall conductivity, are mainly determined by
the cold patch in the low temperature regime, and it is
interesting to note that the slope of the TEP is only con-
trolled by the cold density of states and its derivative, giv-
ing a strong connection between the experimental slope of
the TEP and the patch geometry. Increasing the temper-
ature (T > 200 K), the hot patch starts to contribute to
the thermal properties.

Finally, we present a tentative application of our two-
patch model to the electrical and thermal transport prop-
erties of optimally and overdoped Bi-based cuprates. We
use the electronic band structure and Fermi surface ob-
tained by ARPES experiments and we obtain other in-
formation by the temperature dependence of the ARPES
lineshape. The amplitudes of the intra-patch and inter-
patch terms in the scattering matrix are fixed using the
measurements of the resistivity, while the patch geometry
is fixed by the TEP. Once all the parameters have been
fixed, Hall conductivity, magnetoresistance and thermal-

Hall conductivity are evaluated without any other as-
sumptions and a reasonable agreement between our two-
patch model and experimental values is found. In con-
clusion, the two-patch model for the scattering process
emerges as a minimal division of the Brillouin zone to
account for the strong anisotropy of the effective electron-
electron interaction present in the cuprates, which is able
to describe the several anomalous temperature depen-
dences observed in the normal state transport properties
of cuprate superconductors. The description of the trans-
port properties here presented can be improved increasing
the number of patches, e.g. to N = 5 to include forward
scattering processes.

The functional form of the scattering operator can be
realized in C-DMFT calculations. Work to see if a micro-
scopic model such as a Hubbard model for some choice of
parameters produces a temperature dependence close to
our optimal fit of the data is currently under investigation.
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